
Two-particle approximation to the diffusion coefficient of a tracer particle

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 7199

(http://iopscience.iop.org/0953-8984/12/32/304)

Download details:

IP Address: 171.66.16.221

The article was downloaded on 16/05/2010 at 06:38

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/32
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 12 (2000) 7199–7204. Printed in the UK PII: S0953-8984(00)13398-3

Two-particle approximation to the diffusion coefficient of a
tracer particle

L F Perondi†§, K Kaski† and R J Elliott‡
† Helsinki University of Technology, Laboratory of Computational Engineering, PO Box 9400,
FIN-02015 HUT, Espoo, Finland
‡ University of Oxford, Department of Physics, 1 Keble Rd, Oxford OX1 3NP, UK

Received 19 April 2000

Abstract. In this paper we show that the diffusion behaviour of a tracer particle in a lattice gas
of hard-core particles at a given concentration may be approximated, for the whole concentration
range, by the diffusion behaviour of a tracer particle in a two-particle system with effective trans-
ition rates. In this approach, the other particle is an effective background particle with a dual
particle–vacancy character. The diffusion constant obtained in the present approximation is shown
to be equivalent to the one obtained by solving a set of coupled many-body rate equations with
a second-order approximation, as originally given by Tahir-Kheli and Elliott. Our solution relies
exclusively on random-walk methods and we give, in this framework, the exact solution for the
diffusion coefficient of a tracer particle in a two-particle system with arbitrary transition rates.

1. Introduction

Diffusion in many-particle systems, either with or without static disorder, has received
considerable attention over the years [1]. Notwithstanding, there are few instances in which
exact solutions are available, most of them either for the limiting case of a single particle in a
disordered medium [2] or for particular cases of one-dimensional many-particle systems [3].

The calculation of the diffusion coefficient of a tracer particle in a lattice gas of hard-
core particles at arbitrary concentration c is a true many-body problem, for which no exact
solution is known. Early attempts at approximate solutions were concerned with the limit of
low concentration of vacancies [4]. Le Claire gives a comprehensive review of the earlier
literature [5]. Later, asymptotically correct solutions for the limits c → 0 and c → 1 were
derived through different methods [6–8].

For the case of arbitrary values of c, an early approximate solution has been given by
Kikuchi and Sato [9]. More recently, approximate solutions based on the master equation
approach, with varying methods, have been given by Feders and Sankey [10], Bender and
Schroeder [11] and Nakazato and Kitahara [12]. Departing from a master equation, Tahir-
Kheli and Elliott [13] proposed an approximate solution (TKE) based on a decoupling
scheme of many-particle correlation functions, which proved to be very successful. Their
solution correctly reproduces the single-vacancy and single-particle limits for general, but
non-vanishing, values of the transition rates, J and J0, of tracer and background particles,
respectively. In the case of self-diffusion (J0 = J ), the theoretical results present remarkably
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good agreement with Monte Carlo simulations results for the entire range of concentration
of background particles [14]. Using a different approach in which the diffusion coefficient
is expressed in terms of the velocity autocorrelation function, van Beijeren and Kutner [15]
obtained a solution which is the same as the TKE solution.

In this paper our objective is to show that the TKE solution may also be derived from the
random-walk theory applied to a system of two particles interacting in an effective medium.
In what follows, we first briefly present the theoretical background of the problem; this is
followed by a section on the effective medium. Then, we present the derivation of the two-
particle random-walk approach and show its equivalence with the TKE solution for hypercubic
lattices without static disorder. Finally, we make some concluding remarks.

2. Theoretical background

From general arguments of random-walk theory, it is possible to show that the tracer diffusion
coefficient may be expressed as [16]

D = J0fbfc (1)

where fb = (1 − c) is the blocking factor due to background particles and fc = (1 − Q) is
the correlation factor, where the function Q is given by

Q = 2J0c

(
Uii − Umi

E0

)
. (2)

Here, E0 is a normalization constant which is conveniently chosen to be the maximum transition
rate for a particle leaving a site in the system and Uij are the usual generating functions for the
probabilities of a random walker moving from site j to site i in a given number of hopping steps.
In the limit of c → 0 the difference Uii − Umi is evaluated for the case in which a background
particle interacts with the tracer particle while for c → 1 it is evaluated for the case in which
a single vacancy interacts with the tracer particle. Both these limits are reproduced correctly
with the random-walk theory.

In the following, we show that the general case of arbitrary concentration c may be handled
as well through a two-particle random-walk theory, at a level of approximation equivalent to
that obtained with the TKE. The basic idea consists of setting up an effective two-particle
system, containing a virtual background particle interacting with a tracer particle, in which the
hopping rates are chosen in such a way that as c goes from zero to one the effective system
gradually changes from a single-particle system to a single-vacancy system. Our demonstration
consists of showing that (1) reproduces the TKE approximation for fc, namely

f T KE
c =

(
1 − 2cJ0 cos(θ)

J2(1 + cos(θ))

)−1

(3)

when Q is computed from (2) for the aforementioned effective system. In (3), cos(θ) is a
lattice-dependent geometrical factor. Here J2 characterizes the relative motion of the tracer
and a background particle or vacancy. In the mean-field approximation which includes only
blocking effects on the tracer particle this reads

J2 = J + J0(1 − c). (4)

An improvement which includes the correlation effects is to replace the effective tracer hopping
rate by J0fc(1 − c) and solve for fc self-consistently [14].
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3. Effective medium

In the TKE approximation the hierarchy of many-body rate equations is truncated to the
second-order equation and the original infinite-particle problem is then reduced to that of two
interacting virtual particles in an effective medium. The effective interaction between the
particles and the characteristics of the effective medium given by the approximation are such
that both the single-particle and single-vacancy limits are correctly reproduced, as far as the
blocking and correlation factors are concerned.

The derivation of (1), with Q given by (2), follows a different approach. It is derived by
directly postulating a two-particle system with special characteristics. In it, a tracer particle
interacts with a virtual particle, which represents the whole of the background particles. The
concentration c of background particles defines the hopping rate of the virtual particle, such
that the virtual particle may be seen as a normal background particle when c → 0 and as a
vacancy when c → 1.

The effective system is defined as follows. The hopping rate for the virtual background
particle remains unchanged, equal to J for any value of c, since this is the correct hopping
rate for either a background particle or a vacancy. However, the tracer particle hopping rate
is changed to J0(1 − c), since in the limit c → 1 the tracer particle is immobile, while in
the opposite limit it is a free particle with hopping rate J0. The transition rates for exchanges
between the virtual background particle and the tracer particle is set to J0c. This definition
ensures that in the limit c → 1 the virtual background particle behaves like a vacancy while for
c → 0 it behaves like a normal background particle. Thus, the virtual background particle can
be interpreted as having a concentration-dependent dual particle–vacancy character. Figure 1
shows a two-dimensional representation of the effective system that we are considering in this
study.

J c0

J J (1-c)0

Figure 1. The effective two-particle random walk. The virtual particle is represented by the filled
circle. The transition rate of the virtual particle in the empty lattice is always J . The corresponding
value for the tracer particle is J0(1−c). The tracer particle swaps positions with the virtual particle
with rate J0c.

4. Two-particle random walk

The probability distribution functions associated with a system of two interacting particles
may be obtained from a one-particle system in which one of the particles performs a random
walk in an effective lattice while the other particle is at rest. The hopping rate with which the
mobile particle moves is equal to the sum of the hopping rates of the two original particles.
This could be considered as a ‘change-of-reference-frame-type’ transformation applied to a
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random-walk system. Such an approach is possible only when the lattice has translational
symmetry. Figure 2 gives a graphical representation of the random walk of two particles in a
lattice, where the reference frame has been changed.

J + J (1-c) f0 c

i r m

J c0

Figure 2. The two-particle random walk in a reference frame in which the tracer particle is at
rest. For the definition of the transition rates, see figure 1. Note that the virtual particle may now
jump directly from site i to site m and vice versa. The factor fc multiplying J0(1 − c) refers to the
self-consistent approximation.

We now turn to the evaluation of (Uii − Uim)/E0 for the effective system described
above. The derivation given here will be restricted to a d-dimensional hypercubic lattice, for
which the coordination number is 2d . Since our derivation does not depend on the lattice
geometry, extension to other lattice geometries is straightforward. Our strategy consists,
essentially, of expressing the generating functions relative to the defective lattice in terms
of the generating functions for a perfect lattice. Through simple manipulation of the series
defining the generating functions U , as described previously [16–18], it can be shown that

Uii = 1 + U�
ii Uii + U�

imUmi

Uim = U�
ii Uim + U�

imUmm

Uii − Uim = 1

1 − (U�
ii − U�

im)

(5)

where

U�
ii = λpii + λ2

∑
l /∈�

pilpli + · · · (6)

U�
im = λpim + λ2

∑
l /∈�

pilplm + · · · (7)

Uij = δij + λ
∑

l

pilUlj . (8)

Here, pil stands for the probability that a particle hops from site l to site i. These probabilities
are related to the transition rates of the time-dependent picture through the expression
pil = Jil/E0, where Jil is the probability per unit time for a particle hopping from site l

to site i. � denotes the set of sites (i, r, m) while λ is the usual formal parameter in the
definition of generating functions. Note that U� is the same function as U , with the restriction
that sites in the set denoted by � are not visited. In deriving (5) the symmetry relations
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U�
mi = U�

im, U�
mm = U�

ii , Umi = Uim and Umm = Uii have been used. Equation (5) is also
valid for a perfect lattice, i.e., a lattice with only one particle and no defects. Hence we may
write

[Uii] − [Uim] = 1

1 − ([U�
ii ] − [U�

im])
(9)

where quantities enclosed in square brackets refer to a perfect lattice. From the definitions in
(6) and (7), it may be checked that

U�
ii = λ(pii − [pii]) + [U�

ii ] (10)

U�
im = λ(pim − [pim]) + [U�

im]. (11)

Following the conventional notation we set ([Uii] − [Umi])/2d = − cos(θ), for a d-dimens-
ional hypercubic lattice. Here, cos(θ) may be interpreted as the average cosine of the angle
between two successive steps of a random walker. For our purposes, it is convenient to set
E0 = 2dJ2. In this way, the probabilities [pii] for the perfect system are equal to zero, which
simplifies some of the equations. From (9) it is readily shown for λ = 1 that

[U�
ii ] − [U�

im] =
(

1 +
1

2d cos(θ)

)
. (12)

Noting that

pii = 1 − (2d − 1)J2

E0
− J0c

E0
= 1

2d

(
1 − J0c

J2

)

[pii] = 0

pim = J0c

E0
= J0c

2dJ2

[pim] = 0

(13)

and making use of (9) and (12), the following result is obtained:

U�
ii − U�

im = 1

2d
− J0c

dJ2
+

(
1 +

1

2d cos(θ)

)
(14)

which upon substitution in (5) finally yields

(Uii − Uim)/2dJ2 = − cos(θ)

J2(1 + cos(θ)) − 2J0 cos(θ)
. (15)

Equation (15) together with (1) and (2) give the TKE expression for fc. In their calculation,
Tahir-Kheli and Elliott use an effective interaction V between the tracer and the background.
The first term in pii corresponds to the blocking effect of two neighbouring particles, while
the second term in pii together with pim represent the exchange of the pair.

5. Concluding remarks

Once a formal identity between the TKE approximation and a two-particle system has been
established, one is naturally led to the question of whether any further improvements in the
treatment of the tracer particle problem, in either ordered or disordered lattices, may be achieved
through the present approach.

As for ordered lattices, we believe that we have demonstrated that the present approach
gives good insight into the nature of the TKE approximation. It clearly shows that the latter
works as a scheme for interpolation between two limits, i.e. the single-particle and single-
vacancy limits, for which it gives exact results. The connection between the two limits is
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accomplished by substituting for the set of background particles with a single virtual particle
which changes its character from a normal background particle when c → 0 to a vacancy
when c → 1. It is quite difficult to extract this interpretation directly from the set of rate
equations and approximations from which the TKE has been originally derived. Despite the
advantages in terms of the interpretation given by this framework, it is not evident how one
could improve upon the TKE solution for the treatment of the dynamical correlations induced
by the background particles.

With respect to systems with static disorder, such as bond- or site-disordered lattices,
the present framework seems to open new possibilities for the treatment of the correlations
induced by the static disorder in the tracer movement. Such possibilities are not directly
discernible in the master equation approach. For instance, as a first approximation one may
assume that the many-particle system can be reduced to an effective two-particle system, as
above, independently of disorder in the lattice. One, then, is left with the task of treating
the effect of the static disorder on the random walk of two particles. In references [17, 18]
we provide an example of approximate methods for dealing with this problem. This assumes
that the effective particles interact in an effective disordered medium where the correlation
between successive steps cos(θ) is averaged over different environments and substituted into
the formula for fc. The good agreement between theory and simulation shown there indicates
that the above prescription can, in some circumstances, describe quite successfully the effect
of static disorder on the correlation factor.
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